Centre for Theoretical Physics Nijenborgh 4 9747 AG Groningen

## TENTAMEN GENERAL RELATIVITY

tuesday, 20-01-2009, rooms 5118.-152 en -156, 9.00-12.00

Indicate at the first page clearly your name, address, date of birth, year of arrival and at every other page your name.

## Question 1

Consider a manifold with coordinates  $\{x^a\}$   $(a = 1, \dots, n)$ .

- (1.1) Suppose  $T_b^a(x)$  is a tensor field of rank (1,1) on this manifold. How does this tensor field transform under a coordinate transformation  $x^a \to x^{a'}(x)$ ?
- (1.2) Consider a contravariant vector field  $V^a(x)$ . How does the derivative

$$\frac{\partial V^a(x)}{\partial x^b} \tag{1}$$

of this vector field transform under a coordinate transformation  $x^a \to x^{a'}(x)$ ? Compare your result with the answer you obtained in question (1.1). Can you conclude that the derivative given in Eq. (1) is a tensor of rank (1,1)?

- (1.3) Give the definition of the covariant derivative  $\nabla_b V^a$  in terms of the affine connection  $\Gamma^a_{bc}$ . How should the covariant derivative  $\nabla_b V^a$  by definition transform under a coordinate transformation  $x^a \to x^{a\prime}(x)$ ? Is  $\nabla_b V^a$  a tensor?
- (1.4) Compare the answers to questions (1.2) and (1.3) and derive how the affine connection should transform under a coordinate transformation  $x^a \to x^{a\prime}(x)$ . Is the affine connection a tensor?

## Question 2

The Newtonian limit is defined by the following assumptions:

- (a)  $v/c \ll 1$ : low coordinate velocities v
- (b)  $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} + O(h^2)$ : weak gravitational field
- (c)  $\partial_0 h_{\mu\nu} \ll \partial_i h_{\mu\nu}$  (i=1,2,3): gravitational field is slowly varying in time.

Consider a particle that follows the geodesic equation

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho} \dot{x}^{\nu} \dot{x}^{\rho} = 0 \,, \tag{2}$$

where  $\dot{x}^{\mu} = \frac{dx^{\mu}}{d\tau}$  is the 4-velocity.

(2.1) Give the expression of the connection  $\Gamma^{\mu}_{\nu\rho}$  in terms of the metric tensor and show that in the Newtonian limit the geodesic equation (2) reduces to

$$\frac{d^2x^i}{dt^2} + \frac{1}{2}(\partial^i h_{00}) c^2 = 0 \qquad (i = 1, 2, 3).$$
 (3)

- (2.2) Use Eq. (3) to derive a relation between Eintein's metric tensor component  $g_{00}$  and Newton's gravitational potential  $\phi$ .
- (2.3) Consider in the Newtonian limit an object with mass M. The Newtonian limit can only be trusted if we are much farther away from the object than a characteristic distance which is the so-called Schwarzschild radius  $r_s$ . Use the answer of question (2.2) to derive an expression for  $r_s$ .

Outside the object the metric is given by the Schwarzschild metric

$$ds^{2} = c^{2} \left(1 - \frac{2m}{r}\right) dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} - r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right), \tag{4}$$

where m is a parameter.

(2.4) Derive an expression for the parameter m in terms of the mass M of the object. Is the Newtonian limit valid at r = 2m?

## Question 3

Consider the Robertson-Walker metric (we take c = 1)

$$ds^{2} = dt^{2} - R^{2}(t) \left[ \frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right], \qquad k = +1, 0, -1, (5)$$

We assume that the energy-momentum tensor of the Universe is given by that of a perfect fluid

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} - pg_{\mu\nu}$$
, (6)

where  $\rho = \rho(t)$  is the density, p = p(t) is the pressure and  $u_{\mu}$  is the 4-velocity.

(3.1) Compare this expression with that of a gas of particles

$$T^{\mu\nu} = \sum_{n} p_{n}^{\mu} p_{n}^{\nu} \frac{1}{E_{n}} \delta^{(3)}(\vec{x} - \vec{x}_{n}(t))$$
 (7)

and show that in a co-moving frame the following inequality is satisfied:

$$0 \le p \le \frac{1}{3}\rho. \tag{8}$$

(3.2) Explain to what kind of situations the limiting cases p = 0 and  $p = \frac{1}{3}\rho$  correspond to.

Consider the Friedmann models with p=0 and zero cosmological constant. From the Einstein equations and the continuity equation of the energy-momentum tensor one can derive the following two equations:

$$\dot{\rho} + 3\rho \frac{\dot{R}}{R} = 0,$$
  $\frac{\dot{R}^2 + k}{R^2} = \frac{1}{3}\kappa\rho,$   $k = +1, 0, -1,$  (9)

where  $\kappa$  is the gravitational coupling constant.

- (3.3) Use Eqs. (9) to show that we live in a closed Universe, i.e. k>0, if  $\rho_0>\rho_c$ , where  $\rho_0$  is the present-day density and  $\rho_c$  is some critical density. Derive an expression for this critical density in terms of  $\kappa$  and the Hubble 'constant'.
- (3.4) The k=1 Friedmann model is given by the following solution:

$$R(\psi) = \frac{1}{2}A^2(1 - \cos\psi),$$
  $t(\psi) = \frac{1}{2}A^2(\psi - \sin\psi),$  (10)

for some parameter  $\psi$  and constant A. What is the lifetime of this Universe? For which value of t has the Universe maximal size?