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Question 1

Consider a manifold with coordinates {z®} (a =1,---,n).

(1.1) Suppose T (z) is a tensor field of rank (1,1) on this manifold. How does
this tensor field transform under a coordinate transformation z* — z%(z)?

(1.2) Consider a contravariant vector field V(z). How does the derivative
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of this vector field transform under a coordinate transformation 2% — z(z)?
Compare your result with the answer you obtained in question (1.1). Can
you conclude that the derivative given in Eq. (1) is a tensor of rank (1,1)?

(1.3) Give the definition of the covariant derivative V,V@ in terms of the
affine connection I'j,. How should the covariant derivative V,V* by definition
transform under a coordinate transformation % — z%(z)? Is V, V@ a tensor?

(1.4) Compare the answers to questions (1.2) and (1.3) and derive how
the affine connection should transform under a coordinate transformation
z® — 2%¥(x). Is the affine connection a tensor?
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Question 2

The Newtonian limit is defined by the following assumptions:
(a) v/e << 1: low coordinate velocities v

(b) Guw = N + By + O(h2): weak gravitational field

(¢) Oohuw << Oihw (i =1,2,3): gravitational field is slowly varying in time.

Consider a particle that follows the geodesic equation

i+ T 3v3P =0, (2)

where z# = 4—;; is the 4-velocity.

(2.1) Give the expression of the connection I'*, in terms of the metric tensor
and show that in the Newtonian limit the geodesic equation (2) reduces to

d?zt
dt?

+3@h0) =0 (i=1,2,3). (3)

(2.2) Use Eq. (3) to derive a relation between Eintein’s metric tensor com-
ponent ggo and Newton’s gravitational potential ¢.

(2:3) - Consider in the Newtonian limit an object with mass M. The New-
tonian limit can only be trusted if we are much farther away from the object
than a characteristic distance which is the so-called Schwarzschild radius 7.
Use the answer of question (2.2) to derive an expression for ;.

Outside the object the metric is given by the Schwarzschild metric

2 2
ds? = (1 — —?—)dtz —(1- -?)—ldrz —r2(d6® + sin0d?),  (4)
where m is a parameter.

(2.4) Derive an expression for the parameter m in terms of the mass M of
the object. Is the Newtonian limit valid at r = 2m?
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Question 3
Consider the Robertson-Walker metric (we take ¢ = 1)

dr?

2_ 32 p2
ds® = dt* — R*(t) T

+ r%(df? + sin®0d¢?) | | k=+1,0,-1, (5)

We assume that the energy-momentum tensor of the Universe is given by
that of a perfect fluid

T = (P + p)u,‘u,, — P9uv » (6)

where p = p(t) is the density, p = p(t) is the pressure and u, is the 4-velocity.

(3.1) Compare this expression with that of a gas of particles
1
T = Y phrl = 69(E = (1) (7)
n n

and show that in a co-moving frame the following inequality is satisfied:

1
0<p<gzp. (8)

(3:2) Explain to what kind of situations the limiting cases p = 0 and p = %p
correspond to.

Consider the Friedmann models with p = 0 and zero cosmological constant.
From the Einstein equations and the continuity equation of the energy-
momentum tensor one can derive the following two equations:

LR R*+k 1
p+3p§—0, Rz = 3hP k=+1,0,-1, (9)

where k is the gravitational coupling constant.




(3.3) Use Egs. (9) to show that we live in a closed Universe, i.e. k >0, if
po > pe, Where py is the present-day density and p. is some critical density.
Derive an expression for this critical density in terms of and the Hubble

‘constant’.

(3.4) The k = 1 Friedmann model is given by the following solution:

R() = 54201 — cosh), ) = 3A% —siny), (10

for some parameter ¢ and constant A. What is the lifetime of this Universe?
For which value of ¢ has the Universe maximal size?
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